Orthogonally Evolved AI to Improve Difficulty Adjustment in Video Games

5 Apr

Paper presented as talk at EvoGAMES 2016 in Porto (Portugal), and selected as one of the best papers of the conference.

BY:
Arend Hintze, Randal Olson, Joel Lehman

ABSTRACT:
Computer games are most engaging when their difficulty is well matched to the player’s ability, thereby providing an experience in which the player is neither overwhelmed nor bored. In games where the player interacts with computer-controlled opponents, the difficulty of the game can be adjusted not only by changing the distribution of opponents or game resources, but also through modifying the skill of the opponents. Applying evolutionary algorithms to evolve the artificial intelligence that controls opponent agents is one established method for adjusting opponent difficulty. Less-evolved agents (i.e. agents subject to fewer generations of evolution) make for easier opponents, while highly-evolved agents are more challenging to overcome. In this publication we test a new approach for difficulty adjustment in games: orthogonally evolved AI, where the player receives support from collaborating agents that are co-evolved with opponent agents (where collaborators and opponents have orthogonal incentives). The advantage is that game difficulty can be adjusted more granularly by manipulating two independent axes: by having more or less adept collaborators, and by having more or less adept opponents. Furthermore, human interaction can modulate (and be informed by) the performance and behavior of collaborating agents. In this way, orthogonally evolved AI both facilitates smoother difficulty adjustment and enables new game experiences.

PRESENTATION:

https://docs.google.com/presentation/d/1AYn6KV7hfQxPIY82wCHVqYS022OQtO9gSABKq3lgX50/pub?start=false&loop=false&delayms=60000#slide=id.p

Enjoy it!

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s